If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905x^2+3x-10=0
a = 4.905; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·4.905·(-10)
Δ = 205.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{205.2}}{2*4.905}=\frac{-3-\sqrt{205.2}}{9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{205.2}}{2*4.905}=\frac{-3+\sqrt{205.2}}{9.81} $
| 9x-4+113=180 | | 5.6=p+4.09 | | 324=14(y+1)+14+4y | | x+8=3x-43 | | 5x7-5=50 | | 4(3b-1)=9 | | -5x(x-10)=-35 | | 8w+4=12w-12 | | 9x=3(15-2x) | | 1/5x-6=13 | | 20z+5=10z+75 | | 28+4x=5x+25 | | -6x+10=4x+12+8 | | 4(b+6)=2(b+5)2 | | 6y+9+2y-5=8y+17-4y | | 161-2x=159 | | 2(n=1/3)=3/2n+1 | | 2(2m)+4(4m+20)=108 | | 4(d*5)=20 | | 42=13u-7u | | 2(2m)+4(4m+20=108 | | 8x+10=9x+7 | | 8x+10=9x=7 | | 8.3(x+3.1)=983 | | 8.3(x+3.1)=93 | | 1/3x-3=20 | | 4(3w+2)=2(2w-1) | | 1/9x+7=11 | | 9x+3=116 | | (5/7)=(2/9x) | | 0.36x0.45=0.162 | | e–678=34 |